Langdon Adult Intelligence Test #### STATISTICAL REPORT LAIT NORMING #2, 7/15/79 This report provides an overview of the norming of the Langdon Adult Intelligence Test completed in July 1979, including 553 testees. Only a handful of the earliest responses to the test's appearance in the April 1979 issue of Omni are included. A further norming will be completed after the bulk of the Omni response has been analyzed. The norming sample included 207 persons tested on Form A and 346 tested on Form B. Form A was an early version of the test, now out of print, differing from Form B only in a few items. Thus, one form cannot be used to obtain an independent measure of intelligence for an individual tested using the other. Raw scores of all testees were computed using the appropriate formula for Form A or Form B. Additionally, a score for items unchanged between the two forms, and scores for each of two matched sets of items containing one half of the items on each part of the test, were computed for each testee. Correlations between halves of a test (split-test correlations) are generally lower than those which would be obtained if the tests were full length because any chance variation is a larger percentage of the half test. To com- pensate for this effect, it is usual to apply the formula $r_2 = \frac{2r_1}{1+r_1}$, where r_1 is the uncorrected correlation coefficient and r_2 is the corrected correlation. For Form A of the LAIT r_1 = .822 and r_2 = .902 and for Form B r_1 = .815 and r_2 = .898. Scores on other tests reported by testees were entered into the computer with other data from the answer sheets and paired with LAIT scores. A table of LAIT-previous score pairs for LAIT total score and each subscore was constructed for each test which was used in the norming (see Table 1) and arranged in LAIT score order (lowest to highest). #### MEANS AND STANDARD DEVIATIONS OF TESTS USED IN NORMING THE LAIT | <u>Test</u> | Test
Code | Mean | Standard
Deviation | |------------------------------------|--------------|-------|-----------------------| | Stanford-Binet | S | 100 | 15.8 | | Terman Concept Mastery | `т | 67 | 29 | | Army General Classification Test | A | 100 | 20 | | California Test of Mental Maturity | C | 100 | 16 | | Miller Analogies | M | 10 | 28 | | Wechsler Adult Intelligence Scale | W | 100 | 15 | | Scholastic Aptitude Test (Total) | X | 765 | 255 | | Graduate Record Exam (Total) | G | 715 | - 255 | | Cattell Verbal | V | 100 | 23.65 | | Harding Skyscraper | H | 100 | 16 | | W87 | 8 | 100 . | 16 | | Bloom Analogies Test | В | 0 | 7.75 | | Cattell Culture Fair | F | 100 | 16 | | Eysenck | E | 100 | 15 | | RAM | R | 23 | 3 | | ACT | 7 | 23 | . 3 | | | | | | ## CORRELATIONS BETWEEN LAIT AND VARIOUS STANDARD I.O. TESTS | Test
Code | Total
Number | <u>Part</u> | Limit
Number | Limit
LAIT
Score | Limit
Correlation | Total Correlation | |--------------|-----------------|---|---|----------------------------------|--------------------------------------|------------------------------| | S | 44 | 0 Verbal
1 Spatial
2 Inductive | 36
44 | 594
568
850 | .330
.327
.225 | .136
.085
.225 | | Ť | 10 | 3 Total 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 32
7
7
8 | 563
665
505
551 | .429
.295
.617
.747 | .204
.169
.240
.177 | | Α | 46 | 3
0
1
2 | 7
27
45
44 | 599
564
787
766 | .522
.282
.146
.138 | .273
.167
.139
.107 | | Ċ | 139 | 3
0
1
2 | 46
87
75
44 | 837
544
368
263 | .136
.365
.328
.342 | .136
242
202
.165 | | <u>M</u> | 37 | 3
0
1
2 | 71
37
36
10 | 422
818
703
258 | .305
.338
.362
.715 | 198
338
339
272 | | W | 22 | 3
0
1
2 | 36
22
15
22 | 710
746
370
783 | .441
.285
.350
.271 | .410
.285
.282
.271 | | X | 54 | 3
0
1
2 | 22
22
54
54 | 814
1000
881
913 | .285
.141
.119
.140 | .285
.141
.119 | | G | 55 | 3 °
0
1 | 54
55
54 | 865
1000
829 | .111
.534
.484 | .111
.534
.470 | | V | 160 | 2
3
0 | 54
55
160
158 | 775
860
.974
838 | .457
.532
.311
.312 | .532
.236
.229 | | Н | 18 | 2
3
0
-1 | 158
159
12
9 | 850
870
597
289
349. | .276
.323
.571
.285
.573 | .198
.245
.096
150 | | R | 4 | 2
3
0
1
2
3 | 10
- 4
- 4 | 405
974
838
757 | .275
.561
.204
.586 | 082
.561
.204
.586 | | 7. | ц | 0 | 4 · · · · · · · · · · · · · · · · · · · | 846
949
872
913 | .529
.617
.697
.642 | .529
.617
.607
.642 | | | | 2 3 | 4 | 907 | .617 | .617 | Correlations between the LAIT and previous score distributions for LAITprevious score pairs from the lowest LAIT score through each LAIT score were calculated and printed out and a cutoff point was determined to maximize r^2N , where r is the correlation coefficient and N is the number of score pairs included. Table 2 shows the total number of previous scores reported, the total falling below the cutoff, the overall correlations, and the correlations for the truncated distributuions for each test used. Scores on each test were weighted by this correlation figure, representing the relationship between the LAIT and the test concerned without the effects of the generally lower effective ceiling of most other tests, in calculating the overall means, standard deviations, and correlations for LAIT and previous score distributions for all tests included in the norming. A scatter diagram of LAIT scores against all reported scores on other tests was produced for LAIT total scores and subscores. Outlying points were identified and were not used in calculating distribution means and standard deviations and correlations between LAIT and previous scores. Table 3 sum- marizes the values obtained. ## LAIT AND PREVIOUS SCORE MEANS, STANDARD DEVIATIONS, AND CORRELATIONS | | VERBAL | SPATIAL | INDUCTIVE | TOTAL | |--|---------------------------|---------------------------|---------------------------|---------------------------| | Number of Score Pairs
LAIT Mean
LAIT Standard Deviation
Previous Mean | 563
442.014
238.188 | 566
408.889
233.495 | 564
364.927
221.871 | 575
466.990
222.501 | | (Z-score form) | 2.63167 | 2.62932 | 2.62215 | 2.64632 | | Previous Standard
Deviation | .517525 | •527115 | .511561 | .533550 | | Correlation | .258021 | .479881 | .179265 | .463281 | | | m | | | | Table 3 A correction for the very tight distribution of previous scores reported due to the bulk of the norming population having been preselected by these scores was applied to the previous score standard deviations by the formula , where σ_1 is the uncorrected standard deviation, σ_2 is the corrected standard deviation, and r is the correlation between LAIT and previous score distributions. | | MEAN LA | IT SCORES OF S | SELECTED GROUPS | 5 | | |--------------------|---------|----------------|-----------------|-----------|---------| | Group | Number | Verbal | Spatial | Inductive | Total | | All Testees | 553 | 476.262 | 393.278 | 414.326 | 445.333 | | Men . | 455 | 495.323 | 410.222 | 432.530 | 462.455 | | Women | 98 | 387.765 | 314.612 | 329.806 | 365.837 | | Mensa Members | 442 | 487.113 | 397.887 | 418.570 | 453.219 | | Intertel Members | 75 | 462.920 | 361.907 | 375.253 | 418.653 | | ISPE Members | 61 | 519.049 | 417.590 | 434.492 | 475.754 | | MM Members | 11 | 622.000 | 490.364 | 531.182 | 553.091 | | Four Sigma Members | 43 | 840.023 | 782.861 | 757.233 | 802.093 | | Age Under 20 | 24 | 424.348 | 421.261 | 423.217 | 438.087 | | Age 20-24 | 52 | 412.865 | 385.788 | 384.846 | 413.615 | | Age 25-29 | 118 | 514.492 | 433.712 | 457.898 | 485.025 | | Age 30-34 | 102 | 500.794 | 424.461 | 436.441 | 470.657 | | Age 35-39 | 61 | 482.443 | 413.246 | 421.869 | 452.934 | | Age 40-44 | 53 | 464.792 | 361.698 | 397.755 | 424.283 | | Age 45-49 | 51 | 472.588 | 370.490 | 395.608 | 432.333 | | Age 50-54 | 37 | 503.595 | 383.514 | 422.811 | 457.757 | | Age 55-59 | 26 | 491.731 | 331.885 | 394.538 | 425.462 | | Age 60-64 | 19 | 371.526 | 245.947 | 279.947 | 315.368 | | Age 65+ | 10 | 351.400 | 245.300 | 254.300 | 315.800 | At this point, the LAIT and previous total score means and standard deviations were equated and I.O.'s were calculated. Total and part score means and standard deviations for the entire score distributions were equated to yield subscore I.O.'s. General population percentiles were looked up in an internal table and tested population percentiles were calculated directly. Correlations between each pair of LAIT score distributions are shown on Table 5. #### MUTUAL CORRELATIONS OF LAIT TOTAL SCORES AND SUBSCORES | ereštu čeno s | SPATIAL | INDUCTIVE | TOTAL | |--------------------------------|---------|--------------------|-------------------------------| | Verbal
Spatial
Inductive | .815947 | .941721
.939251 | .946253
.939024
.963145 | Table 5 Tables 4, 6, and 7 summarize some general features of the score distributions. ## LAIT SCORE DISTRIBUTIONS FOR TESTED POPULATION #### VERBAL | Tested Group | LAIT | General Population | TO | |--|--------------|--------------------|--| | Percentile | Scaled Score | Percentile | <u>īō</u> | | 10 | 138 | 89 | 120 | | 20 | 239 | 94 | 126 | | 30 | 341 | 97 | 132 | | 40 | 402 | 98 | 136 | | 50 | 493 | 99 | 141 | | 60 | 559 | 99.7 | 145 | | 70 | 628 | 99.8 | 149 | | 80 | 706 | 99.96 | 154 | | 90 | 777 | 99.98 | 158 | | 95 | 848 | 99.99 | 162 | | 98 | 899 | 99.997 | 165 | | 99 | 949 | 99.999 | 168 | | And the second s | | | Mary Control of the C | #### SPATIAL | Tested Group
Percentile | LAIT
Scaled Score | General Population Percentile | <u>10</u> | |----------------------------|----------------------|-------------------------------|-----------| | 10 | 104 | 93 | 124 | | 20 | 186 | 96 | 129 | | 30 | 232 | 97 | 131 | | 40 | 304 | 98 | 136 | | 50 | 368 | 99 | 140 | | 60 | 445 | 99.7 | 144 | | 70 | 539 | 99.9 | 150 | | 80 | 616 | 99.96 | 154 | | 90 | 703 | 99.98 | 159 | | 95 | 764 | 99.996 | 163 | | 98 | 838 | 99.998 | 167 | | 99 | 872 | 99.999 | 169 | ## LAIT SCORE DISTRIBUTIONS FOR TESTED POPULATION (Continued) ## INDUCTIVE | Tested Group Percentile | LAIT
Scaled Score | General Population Percentile | <u> 10</u> | |-------------------------|----------------------|-------------------------------|------------| | 10 | 133 | 93 | 124 | | 20 | 203 | 95 | 128 | | 30 | 298 | 98 | 134 | | 40 | 352 | 98 | 137 | | 50 | 402 | 99 | 141 | | 60 | 476 | 99.7 | 145 | | 70 | 541 | 99.8 | 149 | | 80 | 616 | 99.96 | 154 | | 90 | 705 | 99.98 | 159 | | 95 | 757 | 99.996 | 163 | | 98 | 827 | 99.998 | 167 | | 99 | 870 | 99.9995 | 170 | ## TOTAL | Tested Group
Percentile | LAIT
Scaled Score | General Population Percentile | <u>I0</u> | |----------------------------|----------------------|-------------------------------|-----------| | 10 | 161 | 92 | 123 | | 20 | 253 | 96 | 129 | | 30 | 324 | 98 | 133 | | 40 | 385 | 98 | 137 | | 50 | 441 | 99 | 141 | | 60 | 501 | 99.7 | 144 | | 70 | 581 | 99.8 | 149 | | 80 | 651 | 99.96 | 154 | | 90 | 720 | 99.98 | 158 | | 95 | 790 | 99.99 | 162 | | 98 | 857 | 99.998 | 167 | | 99 | 870 | 99.998 | 167 | Table 6 (Continued) ## IO DISTRIBUTIONS FOR TESTED POPULATION | IQ RANGE | VERBAL | SPATIAL | INDUCTIVE | TOTAL | |-------------|--------|---------|-----------|-------| | 110 - 114 | 22 | 0 | 0 | 6 | | 115 - 119 | 25 | 18 | 31 | 25 | | 120 - 124 | 48 | 53 | 45 | 36 | | 125 - 129 | 56 | 64 | 55 | 56 | | 130 - 134 | 46 | 78 | 53 | 58 | | 135 - 139 | 69 | 65 | 83 | 79 | | 140 - 144 | 65 | 68 | 60 | 72 | | / 145 - 149 | 61 | 44 | 66 | 58 | | 150 - 154 | 63 | 61 | 62 | 62 | | 155 - 159 | 56 | 53 | 50 | 54 | | 160 - 164 | 25 | 27 | 32 | 30 | | 165 - 169 | 16 | 18 | 11 | -15 | | 170 - 174 | 1 | 4 | 4 | 2 | | 175 - 179 | 0 | 0 | 1 | 0 | Table 7